

Electrical Formulas

	Alternating Current			Alternating or			
To Find	Single-Phase Three-Phase		To Find	Direct Current			
Amperes when	<u>HP x 746</u>	HP x 746	Amperes when voltage and	E			
horsepower is known	E x Eff. x pf	1.73 x E x Eff. x pf	resistance is known	R			
Amperes when	<u>Kw x 1000</u>	Kw x 1000	Voltage when resistance	IR			
kilowatts are known	E x pf	1.73 x E x pf	and current are known				
Amperes when	<u>Kva x 1000</u>	Kva x 1000	Resistance when voltage	E			
Kva are known	E	1.73 x E	and current are known	1			
Kilowatts	I x E x pf	1.73 x I x E x pf	General Information (Approximation)				
	1000	1000	At 1800 RPM, a motor deve	lops 36 lbin, per hp			
Kva	<u>I x E</u>	<u>1.73 x l x E</u>	ຊັບ At 1200 RPM, a motor deve	os 54 lbin. per hp draws 1 amp per hp			
	1000	1000	At 1200 RPM, a motor deve At 575 volts, a 3-phase mot				
Horsepower = (Output)	I x E x Eff. x pf	1.73 x l x E x Eff. x pf	At 460 volts, a 3-phase mol				
	746	746	At 230 volts, a 3-phase mot				
I = Amperes; E = Volts; Eff. = E Kva = Kilovolt amperes; Kw = K		ctor;	At 230 volts, a single-phase	At 230 volts, a single-phase motor draws 5 amp per hp At 115 volts, a single-phase motor draws 10 amp per hp			
			Temperature Conversion:				
			Deg C = (Deg F - 32) x %				
			Deg F = (Deg C x %) + 32				

Motor Amps @ Full Load †

	Alternatir	ng Current Alternating Current Alternating Current		ng Current			Alternatin	ng Current							
HP	Single Phase	3-Phase	DC	HP	Single Phase	3-Phase	DC	HP	Single Phase	3-Phase	DC	HP	Single Phase	3-Phase	DC
1/2	4.9	2.0	2.7	5	28	14.4	20	25		60	92	75		180	268
1	8.0	3.4	4.8	7½	40	21.0	29	30		75	110	100		240	355
1½	10.0	4.8	6.6	10	50	26.0	38	40		100	146	125		300	443
2	12.0	6.2	8.5	15		38.0	56	50		120	180	150		360	534
3	17.0	8.6	12.5	20		50.0	74	60		150	215	200		480	712

† Values are for all speeds and frequencies @ 230 volts. Amperage other than 230 volts can be figured:

 $V = \frac{230 \text{ x Amp from Table}}{\text{New Voltage}}$

Example:

For 60 HP, 3 phase @ 550 volts: $\frac{(230 \times 150)}{550} = 62$ amps.

Power Factor estimated @ 80% for most motors. Efficiency is usually 80-90%.

NEMA Electrical Enclosure Types

Туре	Description	Туре	Description		
NEMA Type 1 (General Purpose)	For indoor use wherever oil, dust, or water is not a problem	NEMA Type 5 Dust Tight (Non-Hazardous)	Used for excluding dust (All NEMA 12 and JIC enclosures are usually suitable for NEMA 5 use)		
NEMA Type 2 (Driptight)	Used indoors to exclude falling moisture and dirt	NEMA Type 9 Dust Tight (Hazardous)*	For locations where combustible dusts are present		
NEMA Type 3 (Weatherproof)	Provides protection against rain, sleet, and snow	NEMA Type 12 (Industrial Use)	Used for excluding oil, coolant, flying dust, lint, etc		
NEMA Type 4 (Watertight)†	Needed when subject to great amounts of water from any angle — such as areas which are repeatedly hosed down				

NOTE: Joint Industry Conference (JIC) enclosures are similar in design to NEMA 12's.

For more complete details see NEMA or JIC Standards for enclosures.

† Not designed to be submerged. * Class II Groups E, F, and G.